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Appendix:
Selective Update of Relevant Eigenspaces for

Integrative Clustering of Multimodal Data
Aparajita Khan and Pradipta Maji, Senior Member, IEEE

The main article introduces a novel algorithm, termed as
SURE (Selective Update of Relevant Eigenspaces), to con-
struct a low-rank joint subspace of a high dimensional mul-
timodal data set. This appendix file describes the multimodal
data sets and the experimental setup used in this work, along
with survival analyses of the cancer subtypes identified by the
proposed algorithm. It also outlines Wedin’s theorem, used in
the main paper to derive error bound on the principal sines
between full-rank and approximate eigenspaces.

I. EXPERIMENTAL SETUP

This section describes the five multimodal cancer data
sets, their pre-processing steps and statistical power, and the
experimental setup used for the existing integrative clustering
algorithms.

A. Description of Data Sets

Five multimodal cancer data sets from The Cancer Genome
Atlas (TCGA) [1] are used in this work. All the data sets
have been downloaded from the Genomic Data Commons
(GDC) Data Portal [2]. The five different genomic modalities
considered for the data sets are DNA methylation (mDNA),
gene expression (RNA), miRNA expression (miRNA), reverse
phase protein array expression (RPPA), and copy number
variation(CNV). Publicly available clinical information for the
all the data sets is retrieved using RTCGA.clinical package [3].
The five multimodal cancer data sets used in this work are as
follows:

1) Cervical carcinoma (CESC): This cancer accounts for
528,000 new cases and 266,000 deaths worldwide each
year, more than any other gynecological tumour [4].
By comprehensive integrated analysis, TCGA research
network has identified three subtypes in CESC [5].
The CESC data set consists of 124 samples: 37 sam-
ples of keratin-low squamous subgroup, 58 samples of
keratin-high squamous subgroup, and 29 samples of
adenocarcinoma-rich subgroup.

2) Glioblastoma Multiforme (GBM): It is the most com-
mon and malignant form of brain cancer and has four
subtypes identified in the study by Veerhak et al. [6]. The
subtypes are proneural, neural, classical, and mesenchy-
mal. The data set consists of 168 samples from three

The authors are with the Biomedical Imaging and Bioinformatics Lab,
Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India. E-mail:
{aparajitak r, pmaji}@isical.ac.in. (Corresponding author: Pradipta Maji)

genomic modalities, namely, RNA, miRNA, and CNV,
as the mDNA and the RPPA modalities are available for
a small number of samples. The data set contains 51,
24, 37, and 56 samples of proneural, neural, classical,
and mesenchymal subtypes, respectively.

3) Lower-grade glioma (LGG): This is a type of brain
tumor originating from glial the cells of the brain.
Diffuse low-grade and intermediate-grade gliomas which
together make up the lower-grade gliomas have highly
variable clinical behaviour that is not adequately pre-
dicted on the basis of histological class. Integrative
analysis of data from RNA, DNA-copy-number, and
DNA-methylation platforms has uncovered three prog-
nostically significant subtypes of lower-grade glioma [7].
The LGG data set consists of 267 samples. The first
subtype has 134 samples which exhibit IDH mutation
and no 1p/19q codeletion. The second subtype exhibits
both IDH mutation and 1p/19q codeletion and has 84
samples. The third one is called the wild-type IDH
subtype and has 49 samples.

4) Lung Carcinoma (LUNG): Based on the same primary
site of origin, lung cancer set can be categorized in two
subtypes, namely, adenocarcinoma and squamous cell
carcinoma. These were also the two major subtypes of
lung cancer in 2015 WHO classification [8]. The LUNG
data set consists of 671 samples with 360 samples of
lung adenocarcinoma and 311 samples of lung squamous
cell carcinoma.

5) Kidney Carcinoma (KIDNEY): The kidney cancer data
set has three histological subtypes, namely, renal clear
cell carcinoma, renal papillary cell carcinoma, and kid-
ney chromophobe. These subtypes were included in the
2004 World Health Organization (WHO) classification
of adult renal tumors [9]. The KIDNEY data set consists
of 737 samples of kidney cancer with 460 samples of
kidney renal clear cell carcinoma, 214 samples of kidney
renal papillary cell carcinoma, and 63 samples of the rare
kidney chromophobe subtype.

A summary of the data sets in terms of the number of
samples, number of features in each modality, sample-to-
feature ratio, and number of clusters is provided in Table S1.

B. Data Platforms and Pre-processing

For the CESC, LGG, LUNG, and KIDNEY data sets,
four different modalities, namely, RNA, mDNA, miRNA, and
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TABLE S1: Summary of Data Sets

Different No. of No. of Features Sample to No. of
Data Sets Samples mDNA RNA miRNA RPPA CNV Total Feature Ratio Clusters (k)

CESC 124 2000 2000 311 219 2664 7194 0.017236 3
GBM 168 - 2000 534 - 2000 4534 0.037053 4
LGG 267 2000 2000 333 209 1544 6086 0.043871 3

LUNG 671 2000 2000 296 180 1572 6048 0.110945 2
KIDNEY 737 2000 2000 261 174 1544 5979 0.123264 3

RPPA are considered, while for the GBM data set three
modalities namely RNA, CNV, and miRNA are considered as
mDNA and RPPA modalities are not available for a majority
of the samples in the data set. In order to avoid considering
features with too many missing values, for all the omic
modalities, those features for which the corresponding omic
expression value is not present for more than 5% of the total
number of samples are excluded. For the remaining features,
missing values are replaced using 0.

For the GBM data set, CNV data from affymetrix SNP array
6.0 platform is used. The raw copy number segmented data
is processed using the CNregions function of iCluster+ [10]
R-package to reduce the redundant copy number regions. The
CNregions function has a epsilon parameter which denotes
the maximum Euclidean distance between adjacent probes
tolerated for defining a non-redundant region. The number
of non-redundant copy number regions extracted for a data
set depends on the value of the epsilon parameter and is
proportional to the number of samples in the data set. It
is recomended in [10] to choose a value of epsilon such
that the reduced dimension is less than 10,000. The default
value of 0.005 is considered for the epsilon parameter of the
CNregions function for all the GBM data set.

For the CESC, LGG, LUNG, and KIDNEY data sets, se-
quence based RNA and miRNA expression data from Illumina
HiSeq and Illumina GA platforms are used. The RNA and
miRNA modalities contain expression signals for 20,502 anno-
tated genes and 1046 miRNAs, respectively. However, filtering
out miRNAs with more than 5% missing values reduced the
number miRNAs for the these data sets to around 300. For
the GBM data set, array based gene and miRNA expression
data is used. Gene expression data from three microarray
platforms, namely, Affymetrix HT HG-U133A GeneChips,
and custom designed Agilent 244K arrays of G4502A 07 2
and AgilentG4502A 07 1 are used which contains log2 nor-
malized gene expression level for 17, 814 genes. Array based
miRNA expression from H-miRNA 8x15K platform is used
which contains expression levels for 534 miRNAs. The under-
lying assumption of the proposed work is that the data follows
multivariate Gaussian distribution. However, the sequence
based gene and miRNA expression modalities of CESC, LGG,
LUNG, and KIDNEY data sets contain normalized count data.
Count data are known to follow a skewed distribution and
have the property that the variance depends on the mean value
[11]. It is observed that genes having larger mean expression
values also tend to have larger variances and are not normally
distributed. Log transformation is generally performed on the
sequence based expression data to make the data more or less
normally distributed [11]. The degree of normality attained

depends on the skewness of the data before transformation.
Therefore, for modalities with sequence based count data, the 0
entries are replaced by 1, and then the data is log-transformed
using base 10.

For the all the data sets except GBM, DNA methylation
beta values from two platforms Illumina Human Methylation
27K and 450K are used. Only the common set of 25,978
CpG locations present in both the platforms are considered
for each sample. Protein expression data from reverse-phase
array based MDA RPPA Core platform is used for all the data
sets which contains protein expression less than 230 annotated
proteins. Finally, variance filtering is performed on the RNA
and mDNA modalities of all the data sets to extract the most
varying 2000 genes and CpG locations. The summary of the
data sets in terms of their sample size, dimension of their
individual modalities, and their number of clusters is provided
in Table S1.

C. Statistical Power of Data Sets

In this section hypothesis testing is performed on the
multimodal data sets in order to evaluate whether clusters are
“really present” in them as opposed to being artifacts of the
natural sampling variation. If the data set comes from only
one Gaussian distribution, then any clustering operation that
would split this data set is not significant; that is, there is
no strong evidence for more than one cluster. This Gaussian
null distributional assumption allows direct formulation of p-
values that effectively quantify significance clustering in a
the data set. The SigClust algorithm [12] is used to assess
the statistical significance of clustering in the multimodal
data sets used in this work. The SigClust method assesses
the significance of a two-way split the data set. In terms of
hypothesis testing, SigClust tests the null hypothesis that the
data set can be modeled as coming from a single multivariate
Gaussian distribution. Accordingly, the null and the alternative
hypotheses are as follows:

H0 The data came from a single Gaussian distribution.
Ha The data came from a non-Gaussian distribution.

When H0 is not rejected, then there is no strong evidence
against the null assumption that the data came from a single
Gaussian distribution. Hence, it cannot be concluded that the
given split of the data is real. The test statistic is the k-means
cluster index (CI). It is given by the within-class sums of
squares divided by the total sum of squares, in the case where



KHAN AND MAJI: APPENDIX 3

TABLE S2: Statistical Power of Different Data Sets

Different p-value based on empirical quantiles p-value based on Gaussian quantiles (p-vNorm)

Data Sets mDNA RNA miRNA RPPA CNV mDNA RNA miRNA RPPA CNV

CESC 0 0 0 0 - 3.063E-081 1.350E-30 0 1.704E-004 -
GBM - 0 0 - 2.300E-002 - 5.291E-133 8.337E-020 - 1.429E-002
LGG 0 0 0 0 - 2.422E-231 1.097E-221 3.121E-096 1.135E-004 -

LUNG 0 0 0 1.730E-001 - 0 7.309E-210 0 1.846E-001 -
KIDNEY 0 0 0 4.000E-03 - 0 3.322E-240 0 4.281E-003 -
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Fig. S1: Evaluation of Statistical power of the individual modalities of GBM data set.

the number of clusters is 2, that is

CI =

2∑
j=1

∑
i∈Ck

||xi − x̄(j)||2

n∑
i=1

||xi − x̄||2
, (1)

where xi is the i-th sample of the data set, x̄ is the global
mean, and x̄(j) is the j-th cluster centroid. A lower value of
CI indicates better clustering. The null distribution of the CI
is approximated by simulating a single Gaussian distribution,
fit to the data. For the calculation of p-values the CI of the
original data set is compared with the empirical distribution of
the simulated CIs. The p-value is the proportion of simulated
CIs that are smaller than the CI for the original data set. This
approach depends strongly on the number of simulated CIs.
Therefore, as an alternative, it is observed that the distribution
of the simulated CI usually is close to normal. Consequently,
the probabilities computed using normal approximation of the
distribution of simulated CI values can be used to compute
the p-value. The number of simulations of null distribution is
taken to be 1,000 and the level of significance is considered
to be α = 0.05. This hypothesis testing is performed on
each modality of a multimodal data set to evaluate whether
the cluster structure embedded in that modality is statistically
significant or not.

The SigClust [12] R-package is used for to perform sta-
tistical hypothesis testing on the multimodal data sets. The
p-value from the hypothesis test is calculated using both
the empirical distribution of the data as well as using the
normal approximation to the distribution of simulated CI
values (denoted by p-vNorm). The SigClust summary plots
for the simulated null distribution of CI values for different
modalities of the GBM data sets are shown in Fig. S1, while
for the other four data sets it is shown in S2. In these figures,

the blue points represent the simulated CIs, while the green
vertical dashed line represents the CI obtained corresponding
to a 2-way partition of the original data set. The p-value is
given by the proportion of blue dots that are present to the left
of the vertical dashed line. Larger the separation between the
vertical line (observed CI) and the blue dots (simulated CIs),
lower is the p-value. A p-value less than 0.05 implies that
the clusters present in the data set are statistically significant
and are not artifacts of natural sampling variations. The p-
values obtained by statistical significance test on the individual
modalities of different data sets are reported in Table S2. The
results in Table S2 show that the p-values obtained for all the
modalities of each data set is less than 0.05, except for the
RPPA modality of LUNG data set. Thus, mostly the clusters
present in individual modalities of the data sets are statistically
significant at 5% significant level. Hence, it can be concluded
that all the data sets, namely, CESC, GBM, LGG, LUNG, and
KIDNEY, indicate the presence of real clusters within them as
opposed to natural sampling variations.

D. Experimental Setup for Existing Algorithms
In the proposed algorithm, concordance between two modal-

ities is computed in terms of NMI between the cluster assign-
ments of two modalities. However, real-life omic modalities
like gene expression, DNA methylation, protein expression are
highly heterogeneous in nature in terms of unit, variance, and
scale, and are likely to have very disparate cluster structures.
The pairwise NMI values for real-life data sets are usually
less than 0.5 indicating low concordance. So, in Step 12 of
the proposed algorithm, the pairwise concordance values are
rescaled to have maximum concordance of 1 between two
distinct modalities. Moreover, the maximum and minimum
concordance values differ for different data sets. Rescaling
the maximum concordance to 1 gives a uniform interpretation
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Fig. S2: Evaluation of Statistical power of the individual modalities of different data sets: CESC (top row), LGG (second row),
LUNG (third row), KIDNEY (bottom row).

of the concordance threshold τ across different data sets. The
minimum concordance, however, has not been transformed to
0 as that would imply completely disparate cluster structure
with no concordance at all between the respective modalities.

The performance of clustering on the joint subspace ex-
tracted by the proposed algorithm is compared with two two-
stage clustering approaches, namely, Bayesian consensus clus-
ter (BCC) [13] and cluster of cluster analysis (COCA) [14],
and five low-rank direct integrative clustering approaches,
namely, joint and individual variation explained (JIVE) [15],

iCluster [16], iCluster+ [17], LRAcluster [18], and PCA [19]
on the naively concatenated data (PCA-Con). The experi-
mental setup used for these algorithms is briefly outlined as
follows:

• BCC [13]: The BCC approach uses Bayesian framework
for simultaneous estimation of the overall consensus and
source-specific clusterings. It assumes Dirichlet distribu-
tion for the prior probabilities of the k clusters and uses
Gibbs sampling to estimate the posterior distribution of
the model parameters and, the overall and source-specific
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TABLE S3: Joint and Individual Ranks Obtained by JIVE Algorithm

Different Algorithm Joint Individual Ranks Algorithm Joint Individual Ranks

Data Sets Rank mDNA RNA miRNA RPPA CNV Rank mDNA RNA miRNA RPPA CNV

CESC

JIVE
(PERM)

5 15 21 13 10 -

JIVE
(BIC)

1 1 0 1 1 -
GBM 4 - 27 19 - 35 0 - - - - -
LGG 2 12 23 18 12 - 2 1 2 2 2 -

LUNG 1 30 29 22 16 - 2 4 5 2 2 -
KIDNEY 3 30 41 24 17 - 3 4 4 2 1 -

clusterings. However, each Markov Chain Monte Carlo
(MCMC) iteration of Gibbs sampling produces different
realizations of the consensus and source specific clusters.
The R code developed by the authors which is available
at http://ericfrazerlock.com/Software.html is used to study
the performance of BCC. The BCC algorithm is executed
at the default setting which uses 1000 MCMC draws
and initialization of the source-specific clusters using k-
means. The values of hyper-parameters a and b in the
Beta(a, b) prior distribution on the model parameter α
are both assigned to 1, under the default setting. The BCC
algorithm additionally has Dirichlet prior concentration
parameter β0 having default value of 1. However this
default value sometimes tend to yield less than k clusters.
Therefore, the prior concentration parameter β0 is varied
between 1 to 10, where higher value of β0 favors larger
number of clusters and more equal proportions for each
cluster. The optimal values of β0 is selected using an
adherence based statistic α∗, as proposed by the authors.
The optimal concentration parameter β0 selected for
CESC, GBM, LGG, LUNG, and KIDNEY data sets are
6, 6, 4, 4, and 10, respectively.

• COCA [14]: For the COCA approach, k-means clus-
tering is first performed on each modality separately
with k clusters. Clusters identified from each modality
are encoded into a series of indicator variables for each
cluster. Consensus clustering [20] is then performed on
the indicator matrix of 0’s and 1’s using Consensus-
ClusterPlus R package [21] version 1.40.0. Parameters
used for consensus clustering are 80% sample resampling
with 1000 iterations of hierarchical clustering based on a
Pearson correlation distance metric, as suggested in [14].

• JIVE [15]: The JIVE algorithm extracts two low-rank
representations for each modality, one encodes the shared
joint structure, while the other encodes modality specific
structure. The ranks of the joint and the individual struc-
tures are automatically determined using two different
criteria: one based on permutation test (PERM), and the
other based on Bayesian information criteria (BIC). After
obtaining the joint rank, say j, and the joint and individual
structures for each modality, the integrated joint structure
from all the modalities is obtained by concatenating
the j largest principal components of the joint structure
obtained from each of the modalities. Then k-means
clustering is performed on the integrated joint structure
to get the final clusters. The joint and individual ranks
obtained by the JIVE algorithm using the permutation
and BIC based rank selection criteria are given in Table

S3 for different data sets.
• iCluster [16]: This is a low-rank based approach which

uses Gaussian latent variable model to extract a (k−1) di-
mensional joint subspace of a multimodal data set, where
k is the number of clusters in the data set. The k-means
clustering is performed in the (k − 1) dimensional joint
subspace extracted by the iCluster algorithm Hence, the
dimensions of low-rank subspaces extracted by iCluster
for CESC, GBM, LGG, LUNG, and KIDNEY data sets
are 2, 3, 2, 1, and 3, respectively. The iCluster R-package
available at https://CRAN.R-project.org/package=iCluster
is used to evaluate the performance of the iCluster algo-
rithm. For each modality, iCluster has a lasso penalty
parameter (λ), which varies between 0 and 1. The value
0 represents the non-sparse solution where all features
are selected, while 1 represents the null model where no
features are included. The optimal value of λ is selected
using the proportion of deviance (POD) statistic [16].
The POD statistic lies between 0 and 1. Small values of
POD indicate strong cluster separability, and large values
of POD indicate poor cluster separability. The value of
λ that minimizes the POD statistic is selected to be
the optimal one. The uniform sampling design approach
of Fang and Wang [22] is used to generate different
combination of λ values that are scattered uniformly
across the search domain as suggested in [23].

• iCluster+ [17]: iCluster+ extracts a (k − 1) dimensional
low-rank subspace of a multimodal data set. It uses
different distributions to model the different modalities
of a multimodal data set. As suggested by the authors,
Gaussian distribution is used to model the real-valued
array based mDNA, and RPPA modalities of CESC,
LGG, LUNG, and KIDNEY data sets, while Poisson
distribution is used to model the count based RNA and
miRNA modalities. For the GBM data set, all the modal-
ities are observed on array based platforms, so Gaussian
distribution is used to model them. The iCluster+ R-
package [10] is used to used to study the performance
of iCluster+. The default parameter setting is used for
the iCluster+ algorithm for all the data sets.

• LRAcluster [18]: This is a low-rank based approach
which models each modality of a multimodal data set
using a separate probability distribution having its own set
of parameters. Similar to iCluster+, Gaussian distribution
is used to model the real-valued array based mDNA, and
RPPA modalities of CESC, LGG, LUNG, and KIDNEY
data sets, and all the modalities of GBM dat set. Poisson
distribution is used to model the count based RNA and
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Fig. S3: Kaplan-Meier survival plots for subtypes identified by SURE on different data sets.

miRNA modalities of CESC, LGG, LUNG, and KID-
NEY data sets. For LRAcluster, the rank of the lower
dimensional subspace is optimized using the likelihood
based “explained variation” criteria [18], as suggested
by the authors. According to this criteria, the value of
explained variance is observed for different values of rank
varying between 0 to 10. The optimal value of rank is
chosen to be the one having the maximum change in
explained variance. Based on this criteria, the optimal
rank obtained for the CESC, GBM, LGG, LUNG, and
KIDNEY data sets are 1, 3, 2, 1, and 2, respectively.
After obtaining the optimal low-rank subspace, k-means
clustering is performed in that subspace.

• PCA-Con [19]: In the PCA-Con approach, genomic
features from all the modalities are concatenated and then
PCA is performed on the concatenated data to extract
the principal subspace. For a comparative study, the
number of principal components considered for PCA-Con
approach is same as the dimension of the joint subspace
extracted by the proposed approach, that is, the number
of clusters k. The PCA is performed using SVD of the
integrated data matrix.

For all the low-rank based approaches, namely, JIVE,

iCluster, iCluster+, LRAcluster, PCA-Con, and the proposed
approach, k-means clustering is performed 30 times and the
cluster solution corresponding to the minimum objective func-
tion is used for comparative analysis. The BCC and iCluster+
algorithms use Gibbs sampling with MCMC iterations, while
COCA uses resampling based consensus clustering technique
to find the final joint clusters. The results of BCC, iCluster+,
and COCA algorithms can vary on different executions of
these algorithms. So, the average performance of these algo-
rithms over 10 executions is reported in this work.

II. SURVIVAL ANALYSIS

Clinical information of the samples, retrieved from the
RTCGA.clinical package [3], is used to analyze the survival
profiles of the subtypes identified by the proposed SURE
algorithm on different data sets. The survival profiles of the
subtypes are compared using Kaplan-Meier survival plots, me-
dian survival times, survival probability of the samples within
a subtype after two, five, and seven years of diagnosis of the
disease, and log-rank test p-value from pairwise comparison of
subtypes. Median survival time is a statistic that refers to how
long patients are expected to survive with a disease. It is the
time expressed in months or years, when half of the patients in
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TABLE S4: Survival Analysis for Subtypes Identified by SURE on Different Data Sets

Different Different No. of Total No. Median Survival Time No. of No. of Events Survival Standard Error
Data Sets Subtypes Samples Of Deaths Time (Years) (Years) Risks Of Death Probability (in probabilities)

LGG

Subtype 1 51 15 1.66
2 3 14 0.343 0.126
5 1 0 0.343 0.126
7 1 0 0.343 0.126

Subtype 2 73 14 7.96
2 28 4 0.906 0.0482
5 15 4 0.741 0.0853
7 8 3 0.551 0.1152

Subtype 3 143 17 5.62
2 43 4 0.933 0.0340
5 10 5 0.740 0.0825
7 5 5 0.370 0.1240

CESC

Subtype 1 33 6 5.57
2 8 2 0.877 0.0895
5 4 3 0.548 0.1601
7 2 1 0.411 0.1688

Subtype 2 70 7 NA
2 21 1 0.957 0.0425
5 11 3 0.794 0.0928
7 9 1 0.721 0.1089

Subtype 3 21 2 NA 2 6 2 0.771 0.144
5 4 0 0.771 0.144

GBM

Subtype 1 37 34 1.726
2 16 20 0.455 0.0825
5 6 8 0.209 0.0707
7 4 2 0.139 0.0620

Subtype 2 48 45 0.944
2 6 42 0.125 0.0477
5 1 3 0.055 0.0350
7 1 0 0.055 0.0350

Subtype 3 50 46 0.921 2 7 42 0.147 0.0511
5 1 3 0.046 0.0395

Subtype 4 33 33 0.984 2 4 29 0.1212 0.0568
5 1 3 0.0303 0.0298

LUNG

Subtype 1 285 86 5.08
2 92 50 0.717 0.0350
5 31 21 0.501 0.0476
7 13 9 0.323 0.0575

Subtype 2 363 105 3.45
2 98 56 0.703 0.0348
5 22 39 0.329 0.0473
7 13 3 0.274 0.0488

KIDNEY

Subtype 1 214 28 NA
2 73 16 0.864 0.0328
5 27 10 0.677 0.0595
7 13 1 0.648 0.0638

Subtype 2 74 12 NA
2 55 6 0.909 0.0356
5 35 5 0.818 0.0503
7 18 1 0.789 0.0563

Subtype 3 445 140 6.3
2 263 70 0.811 0.0205
5 91 55 0.591 0.0304
7 14 12 0.449 0.0462

a group of patients diagnosed with the disease are still alive. It
gives an approximate indication of the survival as well as the
prognosis of a group of patients with the disease. The median
survival time for a disease subtype is given by the time period
where the Kaplan-Meier curve for the subtype crosses the
survival probability of 0.5, and it is not available for subtypes
whose survival curves end before the survival probability of
0.5 due to low sample count or presence of censored samples.
The total number of deaths in each subtype, the number of
samples at risk and the number of events of death at two, five,
and seven years of diagnosis is also observed to study the
prognosis of respective cancer with time. The survival results
are reported in Fig. S3 and Table S4.

The Kaplan-Meier plot for the subtypes of LGG data set is

given in Fig. S3a. The p-values for the log-rank test and the
generalized Wilcoxon test are 2.125E − 07 and 5.901E − 09,
respectively. These p-values show that there is a statistically
significant difference in survival profiles of the subtypes of
LGG, identified by the SURE algorithm. Table S4 shows that
subtype 2 and subtype 3 have median survival times of 7.96
and 5.62 years, respectively. Hence, subtype 2 and Subtype 3
have much better prognosis than subtype 1 which has survival
time of 1.66 years. The survival risk is also very high for
subtype 1, as the number of death is 15 out of 51 samples
and the survival probability is only 0.343 after two years of
diagnosis. The p-value from pairwise log-rank test comparing
subtypes 1 and 2 is 5.117E − 05, comparing subtypes 1 and
3 is 5.915E − 06, while the p-value between subtypes 2 and
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3 is 0.32947. Thus, the difference between survival profiles
of subtypes 1 and 2 and subtypes 1 and 3 are statistically
significant, while the difference is not statistically significant
between subtypes 2 and 3. Both the subtypes 2 and 3 have
similar survival probabilities at two and five years of diagnosis.
However, the survival probability for subtype 3 is 0.370 which
is very low compared to subtype 2 having probability 0.551
after seven years of diagnosis of cancer.

The survival plot for the CESC data is are given in Fig.
S3b. Fig. S3b and Table S4 show that the median survival time
is not reached for subtypes 2 and 3, while for subtype 1 the
median survival time is 5.57 years. Moreover, subtypes 2 and 3
have 7 and 2 deaths out of 70 and 21 samples, respectively. On
the other hand, subtype 1 has 3 death cases out of 33 samples.
The survival probability after seven years of diagnosis is only
0.411 for subtype 1, while the probabilities are 0.721 and
0.771 for subtypes 2 and 3, respectively. These results show
that subtypes 2 and 3 have better prognosis compared to
subtype 1. The pairwise log-rank test p-values for subtypes
1 and 2 is 0.04712, for subtypes 1 and 3 is 0.29749, and for
subtypes 2 and 3 is 0.78188. The difference in survival profiles
is statistically significant only for subtypes 1 and 2 and is not
significant for other pairs.

Table S4 reports the survival analysis results for the GBM
data set and the Kaplan-Meier plot for the GBM subtypes
identified by the proposed SURE approach is given in S3c.
For the GBM data set, the overall log-rank p-value is 0.0137,
which shows that the subtypes have significant difference in
their survival profiles. The median survival times for subtypes
1, 2, 3, and 4 are 1.726, 0.944, 0.921, and 0.984, years
respectively. Comparative results from survival analysis of
other data sets in Table S4 show that the GBM subtypes
have significantly poor prognosis compared to subtypes of
other cancers. Moreover, across all the subtypes the number of
deaths is very close to the total number of samples. Death rate
is most severe for subtype 4, where death occurs for all the
33 samples of the subtype. The p-values for pairwise log-rank
test for subtypes 1 and 2 is 0.01413, for subtypes 1 and 3 is
0.00743, and for subtypes 1 and 4 is 0.00290. The pairwise
survival difference between subtype 1 and the other subtypes
is statistically significant. On the other hand, the pairwise log-
rank test p-values for subtypes 2 and 3 is 0.95869, for subtypes
2 and 4 is 0.71164, and for subtypes 3 and 4 is 0.86016,
which show no significant difference among survival profiles
of subtypes 2, 3, and 4.

The Kaplan-Meier plot and survival analysis results for
the LUNG data set are given in Fig. S3d and Table S4,
respectively. The median survival time for subtype 1 is 5.08
years, while for subtype 2 the median survival time is worse,
that is, 3.45 years. The log-rank p-value for survival difference
is 0.51, which does not show statistical significance. However,
the survival probabilities for subtype 1 and subtype 2 after five
years of diagnosis is 0.501 and 0.329, respectively, and after
seven years of diagnosis, the survival probabilities are 0.323
and 0.274, respectively. This shows increased survival risk for
subtype 2 compared to subtype 1.

For the KIDNEY data set, the survival curves are plotted
in Fig. S3e and the results are reported in Table S4. In the

KIDNEY data set, for both the subtypes 1 and 2, the survival
curves end before the median survival probability of 0.5.
Moreover, the survival probabilities for subtypes 1 and 2 after
seven years of diagnosis are 0.648 and 0.789, respectively,
while for subtype 3, this probability drops to 0.449. This
indicates that subtypes 1 and 2 have better prognosis than
compared to subtype 3 which has a median survival time of
6.3 years. The p-value from pairwise log-rank test comparing
subtypes 1 and 2 is 0.124566, comparing subtypes 1 and 3
is 0.01657646, and for subtypes 2 and 3 is 0.0001816. The
p-values are statistically significant when compared between
subtypes 3 and 1 and between subtypes 3 and 2. The overall
log-rank p-value is 0.00017 when the profiles of all the
three subtypes are compared together, which is statistically
significant.

III. WEDIN’S sin Θ THEOREM

Matrix perturbation theory [24] is used to estimate how
the spectrum of a matrix changes when it is subjected to
perturbations. More specifically, for an approximately low-
rank matrix A and a perturbation matrix E, perturbation theory
analyzes how much the left and right singular subspaces of A
and Ã = A+E differ from each other. Wedin’s sin Θ theorem
[25] provides perturbation bounds for both the left and right
singular subspaces in terms of the gap between singular values
and the perturbation level.

Let A and Ã be two complex (n × d) matrices with
conformally partitioned SVDs as follows:

A =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V1 V2

]∗
; (2)

Ã =
[
Ũ1 Ũ2

] [Σ̃1 0

0 Σ̃2

] [
Ṽ1 Ṽ2

]∗
, (3)

where U1, Ũ1 ∈ Cn×r, V1, Ṽ1 ∈ Cd×r, and

Σ1 = diag(σ1, . . . , σr), Σ2 = diag(σr+1, . . . , σn), (4)

Σ̃1 = diag(σ̃1, . . . , σ̃r), Σ̃2 = diag(σ̃r+1, . . . , σ̃n). (5)

B∗ is the conjugate transpose of B for any matrix B. There
is no particular assumption about the order of the singular
values. Let C(B) denote the column space of B, while ‖ B ‖2F
denotes the squared Frobenius norm of B. Let Θ(U1, Ũ1) be
the set of principal angles between the left subspaces C(U1)
and C(Ũ1), while Φ(V1, Ṽ1) be that between the pair of right
subspaces C(V1) and C(Ṽ1). Let the sum of squared principal
sines between the pair of left and right subspaces be given by
‖ sin Θ(U1, Ũ1) ‖2F and ‖ sin Φ(V1, Ṽ1) ‖2F , respectively. Let
the following residuals be defined as:

RL = AṼ1 − Ũ1Σ1 = (A− Ã)Ṽ1 and (6)

RR = A∗Ũ1 − Ṽ1Σ1 = (A∗ − Ã∗)Ũ1. (7)

Theorem 1. Wedin’s sin Θ Theorem [25] Let A and Ã be
two complex matrices with SVDs partitioned as in (2) and (3),
respectively. If

δ
def
= min

{
min

1≤i≤r,1≤j≤(n−r)
|σi − σ̃r+j |, min

1≤i≤r
σi

}
> 0, (8)
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then
√
‖ sin Θ(U1, Ũ1) ‖2F + ‖ sin Φ(V1, Ṽ1) ‖2F

≤
√
‖ RL ‖2F + ‖ RR ‖2F

δ
.

(9)
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